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Vector Representation of Interacting Dirac
Equation

Eduardo Pifial
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Using the Clifford algebra, a vectorial eguation for the Dirac spinoria equation
is constructed and the relation with the Klein—Gordon equation becomes
transparent. The equation interacting with the electromagnetic field leads to a
nontrivial generaization for the interacting Klein—Gordon equation. The
Lagrangian density for this interaction is given.

1. INTRODUCTION

The Dirac equation isacornerstone of quantum theory (Schweber, 1964;
Bogoliubov and Shirkov, 1959). The purpose of the present paper is to find
a vectoria representation of the interacting Dirac equation. The purpose is
to attain a full freedom in choosing the traditional spinoria representation
or to shift to a vectorial notation with the same physical content. The inter-
acting case producesanontrivial generalization of the Klein—Gordon equation
and an interacting Lagrangian density that is different than the one used in
the literature.

2. THE DIRAC MATRICES

In the sequel, | is the 4 X 4 unit matrix, g*” is the Minkowski metric
tensor, and the indexes . and v run from O to 3. The Dirac 4 X 4 matrices
are defined by means of the relation y* y* + y” y* = 2g** |. In terms of
the Levi-Civita antisymmetric tensor, we define new matrices as follows:
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1 if a,k, w, visaneven permutationof 0123

€opy = 1 1 if a,k, pu, visanodd permutationof 012 3
0 in other cases
Oak = " Oka — % €axpy 'YM‘YV
Ou = 5 €YYV, 0 =% €YY YY"

Together with the unit matrix | and with the y* matrices, they form a set of
16 matrices. Any 4 X 4 square matrix & can bewritten asalinear combination
of these 16 matrices

® = Bl + By + B0 + B, + Bo (1)
The Clifford algebraproduct of any two of the 16 matricesis given asfollows:
Yy© =gl — %GO‘K’WUW 00 = Qo — %Gamvﬂw
Yo, = 08¢ — g%ou, 0" = —od — Mo,
YO = 0,8 = 0,8) + €Y
oY = 0,8) — 0,8) — €l Y
00w = Youn — YO T €un0™
OOy = Yo0un — YO — €unk0™

QK

— _1 — — _1
00,y = ~5 €ax0™, 00 = 00, = —5€upa0™"
= — — A "
O-pwo-ou( - (gp,(xgvx gp,nga)I + eou(pwo- €akn\ 0 W + eou(pu)\o- v
pr'o' = 0-“*’ O-»YM = —0'“*’ oto = —»YM, oo" = ‘YM’ o0 = —]

The 16 matrices together with their negatives form a group of 32 elements.
Therefore the above equations form the multiplication table of the group and
athough these products were written with several terms, only one of them
is different from zero.

3. LORENTZ TRANSFORMATIONS

The dua to the antisymmetric tensor F,, in Minkowski space is lv:m( =
3 €qeuy F*Y, @nd the two invariants of the F,,, are (Synge, 1956; Pifia, 1967)

Fe<F,, = 2H cos®,  F*F, =2Hsno

The null case is when both invariants are zero: H = 0. Then F*, F*, F*, =
0. In the nonnull case we define
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1 /(.8 0 -
W = ﬁ n E Fou< - COSE FaK
0% 0, o*, = 0%, 0% 0F, 0¥, = —a%,

with the property of being related to a two-dimensiona space, orthogonal to
another two-dimensional space determined by the dual tensor o,,.. Then

Fuo = VH (sin g ®u cosg (I),w)

The +* matrices are transformed by Lorentz transformations
(Schweber, 1964)

AysATi=yLp @

where A isthe spinorial Dirac representation of the Lorentz group and the L*,
are the components of the tensorial representation. We write the differential
equation of the Lorentz group in the tensorial representation,

d
iy T — EK a v — ]V
SO =Pl @ Lo =3

where F, is an antisymmetric, constant tensor. The solution to the Lorentz
group equation is L”, (s) = exp (s F",) (Gelfand et al., 1963).

With no loss of generality in the nonnull case, let H = 1 and we obtain
(Bazanhski, 1965; Pifia, 1967)

LY, (8) = ", cosh(ssj n g) - ®"0", cos<s cos%)

+ 0, sinh(ssing) + o, sin(scos%)

A(s) = % 0 Y Y cos@ cos%) s nh(g sin g)

+ -0, Yy'S n<§ cosg) cosh(% sin 9)

NI

2 2 2

s 6 sS. 9 . (s 0\ . (s . O
+ =Cos= =sin=- | — =Ccos= =sin=
Icos(zcosz)cosh<zsm2> crsm<20052>smh<zsm2> ©)]
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For the null case,

s s
L% (9 = 8" + S S A =1+ ZFuyy (9)

4. THE DIRAC EQUATION

Let the constants m, ¢, and % be the mass of the electron, the velocity
of light, and the Planck constant divided by 27r. Moreover, let e be the charge
of the electron and A, be the potential four-vector of the electromagnetic
field. The minimally coupled Dirac equation of an electron interacting with
an electromagnetic field is

., 0 e
- — = 2 =
(lh P cA’*> Y = med
This equation has four linear independent solutions, which are denoted with

index j, ¢;, and are grouped in a nonsingular 4 X 4 matrix ® having these
spinors as columns,

O = [1dabsdy], (iﬁ & - gA,L)v” ® = med

Any particular solution to the Dirac equation is given by the product
b = Oy, where 1 is a constant spinor (5)

The four components of the spinor s are the coefficients of thelinear combina-
tion of the four spinors ¢;, which is equal to the particular solution.

The noninteracting Dirac equation for A = 0 is transformed by taking
the left product with the matrix A of the Lorentz transformation having the
form (3) or (4). In the right-hand side (multiplied by mc) then appears the
transformed spinor (Schweber, 1964), & = Ad. The left-hand side, except
for the factor i, becomes, by using equation (2), which transforms the
Dirac matrices,

0 d J =~
X< o= L* X+ Ay AT — Ad =y L*— Ad = v«
V% ’ V (:)X“ (b ’Y K GX” d) ’y as'(Kd)

This gives the transformed Dirac equation in the new coordinates with the
transformed spinor, but with the same Dirac matrices,

. 9~ .
|hy“ﬁ¢=mc¢

The ® matrix, being formed by spinors, should be transformed in a different
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way, ® = A ® AL This fact, however, is not in contradiction with the
Dirac equation; notice that equation (5) is transformed as

b =Adp = ADY = ADA LAY = D

A 4 X 4 complex matrix ® has 32 rea quantitiesin it. The eight complex
components of vectors B, and B” have only 16 real quantities. One is faced
with acase similar to the Lagrange—Hamilton change of formalismin classical
mechanics when the number of coordinates is doubled, but the second-order
Lagrange eguations are transformed into first-order Hamilton equations.

Expanding the matrix ® asin (1), we get

L9 e
h—— —=A,|B*=meB
O La

0 e ., 0 e
~ZA)B+ (it — ZA ] B = meB
(Ih IXE CAK) ep.vou( g <Ih ax)\ C )\) mc K
i 0 e ARV AL RV AV — v,
— Iﬁ%—eA)\ (e B, + g™+ BY — g"B*) = 2mcB*

(ih 9 _ EAV> (28‘” + Bg“”) = mcB~

ox”
(iﬁi - 9A“) B* = mcB
X C

Eliminating B, B*, and B, we get
d 0
N A PN

ax*  ch X ch M gxe gxK

2
";j,f B.= OB, —i % Fo B — % Gor €4 F,oB

W

Mec2 ~ ~ . e ~ . e

_ = — _— (3 + [

P B.= OB, —i s F..B I o7 O\ €
In particular, for the noninteracting case A = 0, one obtains the Klein—Gordon
equations in terms of the d’ Alambert operator (Cercignani, 1967),

2 ~ ~
0 o8 ="C8, op=TC

The decoupling of the interacting equations is performed by introducing
two new quantities

}\MVUFVUBM
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cr=B*+iB+, Cr=B*—iB*
mPc? e o~
7 C'JL = QCM — 1 & (FMV —iF,,)C"
%Zéﬁ 0C, —i— (F +iF,,)C

These equations can be obtained from the Lagrangian density

(3G e A\ [C e

L = (ax*‘ IchA"C"‘>< + i s C‘*)
mec? ~
ﬁ2

. e
+i = Cx(F* — iF™C, + ——
i — Cx( iFe<)C,

wherethe asterisk denotes the complex conjugate and c.c. denotesthe complex
conjugate of the previous expression.

C§C°‘ + c.C.

5. CONCLUSION

The trandlation between the tensorial and the spinorial notations of the
Dirac equation has been reviewed and used to relate the vectorial and spinorial
representations of the Lorentz transformations. The vectoria form of the
noninteracting Dirac equation reduces to the vectorial Klein—Gordon equa-
tion. However, when a similar tranglation is applied to the interaction with
an electromagnetic field, the Dirac equation leads, in the tensorial language,
to ageneralization of the vector Klein—Gordon equation where the interaction
with the electromagnetic field does not agree with the form used commonly
in the literature.
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