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Vector Representation of Interacting Dirac
Equation

Eduardo Piña1
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Using the Clifford algebra, a vectorial equation for the Dirac spinorial equation
is constructed and the relation with the Klein–Gordon equation becomes
transparent. The equation interacting with the electromagnetic field leads to a
nontrivial generalization for the interacting Klein–Gordon equation. The
Lagrangian density for this interaction is given.

1. INTRODUCTION

The Dirac equation is a cornerstone of quantum theory (Schweber, 1964;
Bogoliubov and Shirkov, 1959). The purpose of the present paper is to find
a vectorial representation of the interacting Dirac equation. The purpose is
to attain a full freedom in choosing the traditional spinorial representation
or to shift to a vectorial notation with the same physical content. The inter-
acting case produces a nontrivial generalization of the Klein–Gordon equation
and an interacting Lagrangian density that is different than the one used in
the literature.

2. THE DIRAC MATRICES

In the sequel, I is the 4 3 4 unit matrix, gmn is the Minkowski metric
tensor, and the indexes m and n run from 0 to 3. The Dirac 4 3 4 matrices
are defined by means of the relation gm gn 1 gn gm 5 2gmn I. In terms of
the Levi-Civita antisymmetric tensor, we define new matrices as follows:
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eakmn 5 5
1 if a, k, m, n is an even permutation of 0 1 2 3
21 if a, k, m, n is an odd permutation of 0 1 2 3

0 in other cases

sak 5 2ska 5 1–2 eakmn gmgn

sa 5 1–3! eakmngkgmgn, s 5 1–4! eakmngagkgmgn

Together with the unit matrix I and with the gm matrices, they form a set of
16 matrices. Any 4 3 4 square matrix F can be written as a linear combination
of these 16 matrices

F 5 BI 1 Baga 1 Baksak 1 B̃asa 1 B̃s (1)

The Clifford algebra product of any two of the 16 matrices is given as follows:

gagk 5 gakI 2 1–2 eakmnsmn, sask 5 gakI 2 1–2 eakmnsmn

gask 5 sda
k 2 gamsmk, skga 5 2sda

k 2 gamsmk

glsmn 5 smdl
n 2 sndl

m 1 emnakglagk

smngl 5 smdl
n 2 sndl

m 2 emnakglagk

slsmn 5 gngml 2 gmgnl 1 emnlksk

smnsl 5 gngml 2 gmgnl 2 emnlksk

ssmn 5 21–2 emnaksak, smns 5 ssmn 5 21–2 emnaksak

smnsak 5 (gmagnk 2 gmkgna)I 1 eakmns 2 eaknlsl
m 1 eakmlsl

n

gms 5 sm, sgm 5 2sm, sms 5 2gm, ssm 5 gm, ss 5 2I

The 16 matrices together with their negatives form a group of 32 elements.
Therefore the above equations form the multiplication table of the group and
although these products were written with several terms, only one of them
is different from zero.

3. LORENTZ TRANSFORMATIONS

The dual to the antisymmetric tensor Fan in Minkowski space is F̌ak 5
1–2 eakmn Fmn, and the two invariants of the Fmn are (Synge, 1956; Piña, 1967)

FakFak 5 2H cos u, F̌akFak 5 2H sin u

The null case is when both invariants are zero: H 5 0. Then Fa
k Fk

m Fm
n 5

0. In the nonnull case we define
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vak 5
1

!H 1sin
u
2

Fak 2 cos
u
2

F̌ak2
va

k vk
m vm

n 5 va
n, v̌a

k v̌k
m v̌m

n 5 2v̌a
n

with the property of being related to a two-dimensional space, orthogonal to
another two-dimensional space determined by the dual tensor v̌ak. Then

Fmv 5 !H 1sin
u
2

vmn 1 cos
u
2

v̌mn2
The gm matrices are transformed by Lorentz transformations

(Schweber, 1964)

L gm L21 5 gn Ln
m (2)

where L is the spinorial Dirac representation of the Lorentz group and the Lm
n

are the components of the tensorial representation. We write the differential
equation of the Lorentz group in the tensorial representation,

d
ds

Lm
n (s) 5 Fm

a La
n (s), Ln

a(0) 5 dn
a

where Fmn is an antisymmetric, constant tensor. The solution to the Lorentz
group equation is Ln

m (s) 5 exp (s Fn
m) (Gelfand et al., 1963).

With no loss of generality in the nonnull case, let H 5 1 and we obtain
(Bazański, 1965; Piña, 1967)

Ln
m (s) 5 vn

kvk
m cosh1s sin

u
222 v̌n

kv̌k
m cos1s cos

u
22

1 vn
m sinh1s sin

u
221 v̌m

n sin1s cos
u
22

L(s) 5
1
2

vmn gm gn cos1s
2

cos
u
22 sinh1s

2
sin

u
22

1
1
2

v̌mn gm gn sin1s
2

cos
u
22 cosh1s

2
sin

u
22

1 I cos1s
2

cos
u
22 cosh1s

2
sin

u
222 s sin1s

2
cos

u
22 sinh1s

2
sin

u
22 (3)
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For the null case,

Ln
m (s) 5 dn

m 1 sFn
m 1

s2

2
Fn

gFg
m, L(s) 5 I 1

s
4

Fak gagk (4)

4. THE DIRAC EQUATION

Let the constants m, c, and " be the mass of the electron, the velocity
of light, and the Planck constant divided by 2p. Moreover, let e be the charge
of the electron and Am be the potential four-vector of the electromagnetic
field. The minimally coupled Dirac equation of an electron interacting with
an electromagnetic field is

1i"
­

­xm 2
e
c

Am2 gmf 5 mcf

This equation has four linear independent solutions, which are denoted with
index j, fj , and are grouped in a nonsingular 4 3 4 matrix F having these
spinors as columns,

F 5 [f1f2f3f4], 1i"
­

­xm 2
e
c

Am2gm F 5 mcF

Any particular solution to the Dirac equation is given by the product

f 5 Fc, where c is a constant spinor (5)

The four components of the spinor c are the coefficients of the linear combina-
tion of the four spinors fj , which is equal to the particular solution.

The noninteracting Dirac equation for A 5 0 is transformed by taking
the left product with the matrix L of the Lorentz transformation having the
form (3) or (4). In the right-hand side (multiplied by mc) then appears the
transformed spinor (Schweber, 1964), f̃ 5 Lf. The left-hand side, except
for the factor i", becomes, by using equation (2), which transforms the
Dirac matrices,

x̃k 5 Lk
mxm, Lgm L21 ­

­xm Lf 5 gk Lk
m ­

­xm Lf 5 gk ­

­x̃k f̃

This gives the transformed Dirac equation in the new coordinates with the
transformed spinor, but with the same Dirac matrices,

i" gm ­

­x̃m f̃ 5 mcf̃

The F matrix, being formed by spinors, should be transformed in a different
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way, F̃ 5 L F L21. This fact, however, is not in contradiction with the
Dirac equation; notice that equation (5) is transformed as

f̃ 5 Lf 5 LFc 5 LFL21 Lc 5 F̃c̃

A 4 3 4 complex matrix F has 32 real quantities in it. The eight complex
components of vectors Bn and B̃n have only 16 real quantities. One is faced
with a case similar to the Lagrange–Hamilton change of formalism in classical
mechanics when the number of coordinates is doubled, but the second-order
Lagrange equations are transformed into first-order Hamilton equations.

Expanding the matrix F as in (1), we get

1i"
­

­xa 2
e
c

Aa2 Ba 5 mcB

1i"
­

­xk 2
e
c

Ak2 B 1 emnak gla 1i"
­

­xl 2
e
c

Al2 Bmn 5 mcBk

2 1i"
­

­xl 2
e
c

Al2 (elkmn Bk 1 glm B̃n 2 glnB̃m) 5 2mcBnm

1i"
­

­xn 2
e
c

An2 12Ban 1 B̃gan2 5 mcB̃a

1i"
­

­xm 2
e
c

Am2 B̃m 5 mcB̃

Eliminating B, Bmn, and B̃, we get

L 5 2gls 1 ­

­xl 1 i
e

c"
Al2 1 ­

­xs 1 i
e

c"
As2, Fak 5

­Ak

­xa 2
­Aa

­xk

m2c2

"2 Bk 5 LBk 2 i
e

c"
Fka Ba 2 i

e
c2"

gkl elmns FnsBm

m2c2

"2 B̃k 5 LB̃k 2 i
e

c"
FkaB̃a 1 i

e
c2"

gkl elmnsFnsBm

In particular, for the noninteracting case A 5 0, one obtains the Klein–Gordon
equations in terms of the d’Alambert operator (Cercignani, 1967),

▫ 5 2gmn ­2

­xm­xn , ▫Bn 5
m2c2

"2 Bn, ▫B̃n 5
m2c2

"2 B̃n

The decoupling of the interacting equations is performed by introducing
two new quantities
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Cm 5 Bm 1 iB̃m, C̃m 5 Bm 2 iB̃m

m2c2

"2 Cm 5 LCm 2 i
e

c"
(Fmn 2 iF̌an)Cn

m2c2

"2 C̃m 5 LC̃m 2 i
e

c"
(Fmn 1 iF̌mn)C̃n

These equations can be obtained from the Lagrangian density

L 5 21­C̃*a
­xk 2 i

e
c"

AkC̃*a2 1­Ca

­xk
1 i

e
c"

AkCa2
1 i

e
c"

C̃*a(Fak 2 iF̌ak)Ck 1
m2c2

"2 C̃*aCa 1 c.c.

where the asterisk denotes the complex conjugate and c.c. denotes the complex
conjugate of the previous expression.

5. CONCLUSION

The translation between the tensorial and the spinorial notations of the
Dirac equation has been reviewed and used to relate the vectorial and spinorial
representations of the Lorentz transformations. The vectorial form of the
noninteracting Dirac equation reduces to the vectorial Klein–Gordon equa-
tion. However, when a similar translation is applied to the interaction with
an electromagnetic field, the Dirac equation leads, in the tensorial language,
to a generalization of the vector Klein–Gordon equation where the interaction
with the electromagnetic field does not agree with the form used commonly
in the literature.
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